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Abstract. Using second-order perturbation theory in U for the self-energy. we solve the self- 
consistent equations for the local Green function of the infinite-dimensional Hubbard model. 
We consider the cases of Gaussian and semicircular free densities of states (cos). and calculate 
the spectral densities p ( o )  for various V .  lo the semcircular case we investigate the existence 
of a Mort tlansiuan at half-hlling. Even for large U we obtain a metallic solution. Treating 
the free DOS as a variable parameter. the method also gives an approximate solution of the 
finite-dimensional Hubbard model. We consider the case of a (regularized) logarithmic DOS 
appropriate for the two-dimensional case. 

1. Introduction 

The theory of systems of correlated fermions on a lattice is greatly simplified in the limit 
of high dimensions. At least in  the weak-coupling limit, essential features such as the 
correlation energy of systems in three and even lower dimensions are thought to be well 
described by the results obtained in the infinitedimensional (dm) limit. The d m  limit of the 
Hubbard model was first introduced by Metzner and Vollhardt [ I ,  21 and developed later 
by Muller-Harunann 13, 91. 

More recently [4], Georges and Kotliar presented an exact mapping of the 
Hubbard model in infinite dimensions onto a single-Anderson-impurity (or Wolf0 model 
supplemented by a self-consistency condition. This provides a mean-field picture of strongly 
correlated systems, which becomes exact as d + 00. 

In this paper, we develop the method from [4] and we use it in the cases of Gaussian, 
semicircular and logarithmic free densities of states (DOS), calculating the spectral density 
for various values of U .  Three independent groups [ 5 , 8 , 9 .  IO] have found a Mott transition 
for large enough U for the case of the semicircular free DOS. The Green function Monte 
Carlo (GFMC) calculations suggest that the system is a Mott insulator at finite temperature 
[5 ] .  Caffarel and Krauth [6] have developed a method for solving the mean-field equations 
by mapping them onto an impurity coupled to a finite number of conduction band states 
and solving the model exactly and self-consistently, They find that the insulating state is 
stable at T = 0 for U > - 4.6. Rozenberg ef a1 [7. 111 find evidence for two critical 
values of the interaction. For U < U,, there is only a metallic solution to the mean-field 
equations. For U,, < U < Uc2 there are both the metallic and insulating self-consistent 
solutions to the mean-field equations. For U > Ucz, they found that only the insulating 
state is stable. They estimate that Ucz - 2.8 [7] partly on the basis of perturbation theory 
and more recently U ,  - 3.37 [ I  11. 

Our work is motivated by the claim that a Mott transition occurs in second-order 
perturbation theory at T = 0. We track the metallic solution of the mean-field equations as 
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a function of the interaction U, using second-order perturbation theory. We find that there 
is a self-consistent metallic solution for larger values of U than in [5 ,  81, although it  is 
numerically hard to find. 

We also suggest a possible reason for the discrepancy between our results and those 
of [SI. In [SI it was claimed that QMC at a temperature T = & should reproduce all the 
features expected for T = 0. The problem is that at large U there is a low-energy scale 
associated with the width of the central quasiparticle peak in the metallic state which can 
be smaller than T = &. The energy scale set by the width of the central peak sets a 
temperature scale over which the entropy associated with the spin degrees of freedom is 
quenched. (Because the ground state is assumed homogeneous in spin and space, possible 
magnetically ordered states have not been considered.) 

In the more recent article [ I  I]. the authors present an intuitively appealing scaling 
argument (see also [ 5 ] )  to suggest that the metallic solution must become unstable once the 
central peak becomes too narrow. On the basis of this and the numerical solution of the 
self-consistent equations they estimate Uc2 - 3.4. Our results are not consistent with this 
particular estimate for Ucz. We discuss possible origins for this discrepancy. 

The method developed for infinite dimensions can be used to devise approximations 
in the finite-dimensional case and we consider the logarithmic DOS thought by some to be 
appropriate for the quasi-two-dimensional superconductors. 

L S Macarie and N d'Ambrumeni1 

2. Hubbard model in infinite dimensions 

The well known single-band Hubbard model Hamiltonian is given by 

where t i j  is the hopping integral, U is the Coulomb repulsion, tin, t cj, are the creation and 
annihilation operators, respectively and nit, n,h are the occupation numbers. 

In the limit d -+ CO, the Hamiltonian parameters have to be scaled to keep both the 
kinetic and potential energy per site finite and the scaling depends on the nature of the 
lattice. 

The self-energy C is defined from the interacting single-electron Green function G(k, w )  

(2) 
by 

G(k,  w )  = [w - <(k)  - C ( w )  + 6~1". 
For the Hubbard model at infinite dimensions C is independent of momentum (this follows 
from the irrelevance of momentum conservation at the vertices of skeleton diagrams), and 
depends only on frequency [ I ,  91. 

In a Fermi liquid the self-energy C(w)  as w + 0 determines the usual mass 
renormalization and lifetime effects with 

Im c ( w )  = o(w2) (w + 0). (3) 
EF in (2) represents the chemical potential I.L and is defined by 

t-F = E; + C(0) (4) 
(6; is the Fermi energy fixed by the particle density n).  

action 
To determine C we consider an auxiliary impurity problem (as in [4]) with the single-site 
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where Go is the 'bare' Green function of this local dynamics. Go does not coincide with 
the non-interacting site-diagonal Green function of the Hubbard model (except for U = 0): 
in the atomic limit for example, Go = I/(@ + cp) .  

It is possible to think of S as the action from a model describing a single fermion c, 
hybridized with a conduction band akn (Anderson model): 

The dynamics for c, is identical to (5)  with 

where A(€) = Et V,'S(c - Er) is a combined measure of the hybridization and of the 
density of states of the conduction electrons. However, it may be more natural in the 
present context to view ( 5 )  as describing a Wolff model (i.e., a free lattice gas with a local 
Green function Go and U acting on a single site) [IO]: 

then 

where A(€)  = zk 6(c - Ek). The second formulation clearly emphasizes the reduction of 
the infinite-dimensional Hubbard model to a self-consistent singlesite Hubbard model. This 
can be considered as a natural formulation of mean-field theory for lattice fermion models. 

The impurity problem has a self-energy Bimp[Go, o] defined from the interacting Green 
function G(w)  by 

G(w) = [G,' - Cimp]-l. (10) 

The mean-field equations require that the site diagonal Green function of the Hubbard 
model (equal to the sum of G(k,  o) over momenta if the system is homogeneous) actually 
coincides with (10): 

(11) 
W E )  m 

G ( o - i q )  = dc 1, w ++ - 6 - c ( w  -iq) - 6; - iq 

with B = ZimP(w) and t = c ( k )  -e:. Notice that the nature of the lattice enters into the 
mean-field equations (5,lO.l I )  via the density of states D ( t )  only. 

Treating D ( t )  as a variable parameter, we will consider the cases of (a) Gaussian DOS: 
(b) semicircular DOS; (c) logarithmic DOS. 

3. Method 

We have solved ( S ) ,  (10) and (1 1) using second-order perturbation theory at T = 0 for the 
single-site dynamics (5) .  

It has been shown by Yosida and Yamada [12] that perturbation theory in U is quite 
well behaved for the Anderson model, provided that the expansion is made around the non- 
magnetic Hartree-Fock solution. Thus, following the idea from [4], we use the modified 
'HartreeFock' propagators G,: = G;' - Un/2,  to calculate the second-order correction 
C(?) and write Z = U n / 2  + CO). 
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The imaginary part of C(’’ is given by 

where the spectral density p ( w )  is ~ H F  = (Im G H F ) / K .  The real part of C”’ is obtained 
from the Kramers-Kronig relation: 

Using the technique of Laplace transforms from [3]. which makes the numerical solution 

& ( t )  = 1 p(fw)exp(-iwt)do (14) 

of the problem more efficient, we define 
m 

and 

& ( t )  = u(fw)exp(- ior )dw (15) Lm 
of the particle and hole parts of p and U, Using these, (12) transforms to 

U%t(t) = uZPxt)F-(f)F*(z) (16) 
which gives a description of the time evolution of a particle via the creation of a particle-hole 
pair Inverting the Laplace transform (15) and using the relation 

we finally get 

C”’(w - iq)  = i 

C‘z’(o - iq) = Re Z(*’(w) + i Im E(*’(w). 

dr [u+(-t) + u-(r)] exp(-iwt) (18) Lm 
that is 

(19) 

We used (18) to calculate E(’) and C, The integration in (14) and (18) can be reduced 
to an appropriate finite energy and time interval, respectively. 

The self-energy C is then used in (11) to find G and define an altcrnative Go from 
G;’ = G-’ + C which will establish a new GLF. We then take a weighted average of the 
spectral densities corresponding to GHF and GLF, i.e. 

1 
piF = -(U Im GHF + fl Im GLF) (20) 

K 

with 01 + fl = 1, and use this to recalculate X(”. The process is then iterated until 
convergence is reached. There is a tendency to drift from the convergence path. The 
process described above cured this by choosing f l  small. During the iteration process the 
total number of particles remains constant. 

4. Results 

The three cases considered are explored in the following sections. 
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4. I .  Gaussian DOS 

In the case of a hypercubic lattice, the free DOS takes the Gaussian form: 

When U is very small, p(w)  = D(w) in (12) and U ( @ )  becomes 

We find that the real and imaginary parts of the infinitesimal self-energy, 
i[d?C(w - iq)/dU2]l~,o, are in good agreement with the results from [3]. The imaginary 
part shows the quasi particle property (3) for small energies. The real part contains 
information about the shift of the Fermi energy (4). 

For larger U ,  the spectral density of states p ( o )  is replaced by P H F ( W )  in (12) and 
we use the technique described in the previous section. The results obtained for p(o)  for 
U = 2.5& n = 0.6 and U = 2.5&, n = 1 are in good agreement with the results from 
[4]. (As pointed out in [4]. these results differ considerably from those of [3], in which a 
single-peaked structure is always found.) We find that p ( w )  has the three-peaked structure 
expected for n = 1. The close agreement of our results with the results from 141 suggested 
that we consider the cases of the semicircular free DOS and logarithmic free DOS where the 
method has not yet been applied. 

4.2. Semicircular DOS 

In the case of the Bethe lattice (tree lattice in infinite dimensions), the free DOS has the 
semicircular form: 

where Hubbard’s hopping parameter f = D/2. We take D = 1. The local Green function 
integral (1 1) can be solved analytically and we obtain 

G ( w  - iq) = (24) 
w - i q  - C +  U/:!+  ,/(w-iq - + U / 2 ) = -  D2 

for half-filling, where E F  = U / 2  and q = 
This leads to a simpler computation than for the Gaussian DOS and for half-filling we 

obtain similar results for the spectral density p(w).  We investigate the existence of a Mott 
transition at half-filling, but even for large U we obtain a resonant peak in the spectral 
density p(w)  (narrower for larger U) at w = 0. We present the results for U = 3 at half- 
filling in figure 1. We have also computed p(w)  for the case U = 4. They are different from 
those in [SI where perturbation theory at finite temperature was used. Using perturbation 
theory at finite T (= &) or QMC at the same temperature, everything which occurs on 
any energy scale smaller than T will not be resolved. This is the case of the central peak 
for U > 3.6. We have calculated Im C(0) and a few values of Im C(w) .  We find that 
Im C(w) is very large close to w = 0 for large U ,  but for w = 0, it is always zero to within 
computational accuracy, so that we still have a Fermi liquid. 
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Figure 1. The spectml density p ( o )  for U = 3 and n = 1. for the care of the semicircular free 
DOS. 

Similar results to those shown in figure 1 also appeared in [ l l ]  for the case U = 2.9. 
Although the results appear very similar we find more of the 'jagged' structure in the density 
of states. We find that this fine structure is sensitive to the choice of the parameter q in 
equation (24). Although it is quite easy to obtain converged solutions for large q (- IOm2) 
the full structure only appears when q is chosen very small (we use 17 - 

We note that at half-filling, the spectral density at the Fermi energy we obtain. is pinned 
at its value in the non-interacting system. This is the correct result, if the system is a Fermi 
liquid (i.e. the imaginary part of the self-energy at o = 0 becomes zero). This follows after 
setting w = 0 in equation ( 1  l), which gives: 

- R e  C(0) - 6:). 

Replacing the chemical potential EF defined by equation (4), the spectral density for w = 0 
becomes: 

1 
p(0) = --ImG(O) = D(0) .  

P 

which does not depend on U .  In particular, for the case of the semicircular free DOS, p(0)  is 
approximately equal to 0.636, which is precisely the value we obtain after a large iterative 
calculation. The total number of particles remains constant during the iteration process in 
all cases. 

In figure 2 we show how convergence is obtained for the relatively large value U = 3. 
Convergence is difficult to obtain if U - 2.8, but is possible to obtain using the 
process described in Section 3, equation (20). However, since we have to choose ,9 small, 
the number of iterations required is large. For example, in the case U = 3, we used 
,9 = 0.01. The iteration process is stable close to the self-consistent solution in the sense 
that E&) = I ~ X F O ~ ) ( ~ )  - p ~ ~ ( a ) ( o ) I  vanishes for all w once the iteration number It is large 
enough. We always start (It = -1)  from the non-interacting (U = 0) ground state (using 
~ H F ) .  In the early stages of the iterative procedure E,,(W) can increase with It for some w; 
the procedure leads eventually to convergence (after 800 iterations for U = 3). In figure 3, 
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Figure 2. The evolution of thc spectral density p ( o )  as a function ofthe iteration number It. for 
U = 3 (semicircular free DOS). Wc used p = 0.01 (se equation 20). The lines on the surface 
which end up parallel to the iteration number axis once convergence has been found show how 
the value of p evolves far any given (U. 

we show how convergence is obtained for U = 6. Again we start from the non-interacting 
DOS (at It = - 1 )  using 6 = 0.001. The change in the form for p seen after 700 iterations 
occurs when we increase p to 0.01. 

Figure 3. The same as figure 2 with U = 6 (stmicircular free 00s) .  The change in the evolution 
af p ( w )  Seen at around i t  = 700 occurs when we increase p from o.nn1 to 0.01 

In figure 4 we show how the width (FWHM) of the quasiparticle varies with U .  We 
find that even for large U the width will not become zero as was claimed in [XI. For 
2.5 < U < 2.75, there is a plateau, which may explain the suggestion of the critical value 
uc* - 2.8. 
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Figure 4. U versus the width (FWHM) of the quasiparticle pe3k for the semicircular free DOS. 

Although the self-consistent solution is hard to pin down, we find that it is there even 
for large U. As pointed out in [7], the insulating state can also exist as a self-consistent 
solution for U > U,, - 2.7 and has an energy very close to that of the metallic solution. 
This would explain why the metallic solution is numerically hard to find. We believe that 
it could also explain why different methods [6] find that the insulating solution stabilizes at 
different values of U. 

In [ I  I ]  it was suggested that in the limit of a very narrow central peak i n  p(o), then 
Go@) would be dominated by poles at characteristic frequencies *.WO, related to the central 
peak width of p(w)  and to U. Provided .wo >> A, where A (= ( I  -dC/dw)-l) is a measure 
of the width of the quasiparticle peak, then the Green function can be parametrized using a 
(universal) function to describe the low-energy scale spectrum and an incoherent part. This 
parametrization can be used to estimate the critical value Ucz at which a metallic solution 
might collapse. It leads to the estimate U& - 3.3, whereas we find a metallic solution for 
U > 3.4. We have looked at our solution to see why this argument might break down. 
It can be seen in figures 1-3 (and in fact already in figure 2 of [ I  I]) that the spectrum 
does not completely separate into a low-energy and a high-energy part. There is always 
spectral weight between the central peak and the incoherent peaks at -U/2. We can also 
see this in the spectral weight of the ‘mean-field’ Go or the ‘HartreeFock’ spectral density 
of states ~ H F  (see figure 5). This is (as expected) dominated by a pole at a characteristic 
frequency 00 but there is also a significant peak appearing at lower energies. The simple 
parametrization of G used in [ I  I ]  does not account for this second peak i n  the spectral 
function for Go, although we do not have an explanation of why not. 

4.3. Logarithmic DOS 

The method used in the Gaussian and semicircular cases gives an approximate solution of 
the finite-dimensional Hubbard model. We consider the case of a (regularized) logarithmic 
DOS appropriate for the two-dimensional case for parameters which may be relevant to 
high-Tc superconductors [ 13, 141. 
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Figure 6. The spectral density p(w)  for LI = 6. n = I a d  f = 0.5, in the wse of rhe logarithmic 
free DOS. 

For n = 1, around midband. the free density of states (U = 0) takes the form [I51 

per Cu atom and per spin in the case of some cuprates for the tetragonal phase, where 

E = -2t(cos k,a + cos k,b) (28) 

a,  b are lattice parameters and t is the transfer integral in plane. 
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The van Hove singularity in p o ( t )  is broadened in the case of the cuprates because of 
the transverse coupling between planes and impurity scattering [16]. Around midband the 
logarithmic term will dominate. We assume for & ( E )  

-4r < E  < 4 t  
2.4674 c 2 +  A2 
4tYr- 1 6tZ 

pa(€) = -7 log - 
p&) is normalized to conserve the total number of states and A - 4 x 10-*t [ 161. 

semicircular DOS at any given U we choose I so that the second moments 
In order to compare the results obtained for the logarithmic DOS with those of the 

are the same. For U = 3 this gives I = 0.14. We find that the spectral density P ( E )  has a 
similar three-peaked structure to that shown in figure 1. although the peaks are sharper. 

We have also considered the case t = 0.5 and U = 6 which, it has been claimed, may 
be appropriate for HTC superconductors [13, 141. The results are shown in figure 6. 

5. Conclusion 

The method developed (at T = 0) in  this paper, which is based on perturbation theory in 
U, finds similar behaviour for the spectral density for different free DOS. 

In the case of the semicircular free Dos within the space of homogeneous (non- 
magnetically ordered or non-Cow) states, in perturbation theory at T = 0, a Matt transition 
does not occur even for U as large as six. 

These results are different from previously published results [5, 8, I I]. We attribute 
the discrepancy to the fact that these treatments are for systems at finite temperatures and 
that extrapolation to T = 0 of these results was not applicable. We have also analysed the 
validity of the simple scaling argument given in [ I  I]. We point out that the condition for 
the validity of this argument do not appear to hold when looking at our numerical results. 
In particular there is total separation of energy scales. 

References 

[ I ]  Meuner W and Vollhxdl D 1989 Phys. Rev. Lett 62 324 
121 Metzner W 1989 2 Phys. B 77 253 
131 Muller-Ham" E 1989 Z Phyr. B 76 21 1 
141 Georges A and Kotliar G 1992 Phy,s. Rev B 45 6479 
[5] Jarmll M 1992 Phyr. Rev, Len 69 168 

Rozenterg M J. Zhang X Y and Kotlix G 1992 Phys. Rev. Len 69 1236 
Georges A and Kraulh W 1992 Phys. Rev. Len. 69 1240 

[6l Caffarel M and K h t h  W 1994 Pkys. Rev. Len. 72 1545 
171 Roznberg M, Mociler G and Kotliar G 1994 SISSA Preprint 
181 Zhang X Y, Rmnberg M J and Kotliw G 1993 Phy,?. Rev. k r t .  70 1666 
191 Muller-Harunan E 1989 Z Phyr. B 74 507 

[IO] Georges A, Kotlix G and Si Q 1992 Inr. J ,  Mud. Phys. B 6 705 
[ I l l  Rozenberg M 1, Kotliw G and Zhag X Y I994 Phys. Rev. B 49 10 181 
[I21 Yosida K and Yamada K 1970 Pmg. Theor. Phy.7. Suppl. 46 244 
[I31 Matheiss L F 1987 Phys. Rev. Len 58 1028 
[I41 Fujimori A. Takayma-Muromxhi E. Uchida Y and Okai B 1987 P h y  Rev. B 35 8814 
[ IS ]  Friedel 1 1987 J. Phy.riyue 48 1787 
[I61 Friedel J 1988 J. Physiyue 49 1435 


